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Abstract

This note characterizes the optimal construction of (possibly) multi-component super-observation
(or ‘super-obs’) based upon the criterion of minimizing the information lost in the super-obbing
process. It is asserted that, by an artificial intervention that adjusts the weights given to the
super-ob, it is possible to ‘structurally precondition’ the assimilation problem to speed up the
convergence of a Krylov-based iterative minimization (such as the conjugate gradient method,
for example) without significantly changing the convergent limit of the process. By an exami-
nation of this optimal formulation in the context of a compact cluster of point data it is shown
that, to the leading approximation in an asymptotic scaling parameter describing the cluster’s
size, the optimal multi-component super-ob is essentially identical to the multipole character-
ization of generalized super-obs suggested (on an intuitive basis) in an earlier note by Purser,
Parrish and Masutani.

1. Introduction

For dense satellite sounding data and for fields of radar reflectivity the cost of assimilat-
ing each individual measurement outweighs the marginal benefit that the given measurement,
amongst so many others like it, confers on the resulting assimilation. Discarding a large pro-
portion of such data is an economical solution which entails some loss of information. In some
circumstances, a better resolution of this problem is to combine the data in sets of appropriate
sizes and to characterize the collective measurements within each set by an appropriate average
value, or a very much reduced set of summarizing values, based on an averaging procedure
designed to minimize the information loss in a more intelligent way than is implied by blindly
thinning. The compression of information from a cluster of raw data into a smaller set of
representative quantities and their associated precision weights gives rise to what is known as
a “super-observation” (Lorenc 1981), usually abbreviated to “super-ob”. More generally in a
hierarchy of nested clusters, the contributing data of a higher level super-ob can themselves
include super-obs.

We propose that an examination of the independent precision-weight values of each super-ob,
followed by an intervention that artificially caps these values to a judiciously determined upper
limit, will have the effect of ‘structurally preconditioning’ the assimilation system – essentially
reducing the largest eigenvalue of the Hessian of the minimization process by slightly altering
the problem being solved. Formally, the limit of convergence of the iterative minimization
will also be slightly altered in this process, but the perturbation induced by this structural
preconditioning will be, in practice, so small as to be insignificant. If the preconditioning is
effective, then we can expect that the very large condition number of the original problem will
be reduced (very substantially in some cases) so that, after any given finite number of conjugate
gradient, or Krylov, descent iterations (van der Vorst 2003), the overall fit of the assimilation
to the truth will be, on average, improved.

In general, a super-ob can be a multi-component object. In this note we state the conditions
under which a super-ob of this type can be said to be ‘optimal’ subject to constraints on the



number of components it possesses. The optimality we invoke is interpreted as minimizing the
loss of information in a formal sense. In terms of this definition we also show how super-obs
can be given an asymptotic characterization. The leading terms in each component gives rise
to an approximately optimal super-ob of exactly the multi-pole form proposed in Purser et al.
(2000).

2. Information-theoretic characterization of optimal super-observations

Consider a compact cluster of m observations which we wish to replace by a smaller num-
ber of virtual measurements constructed to emulate the dominant effects of the original set.
We assume, for simplicity, that the statistics of errors are Gaussian and that the observation
operators are linear. We shall be concerned, initially, only with the marginal effect of the data
compression of this one cluster, assuming that all other data are already assimilated (with or
without super-obbing). Also, since the Gaussianity, and linear operator assumptions allow us
to treat the assimilated data sequentially, we can assume that the effective background for the
assimilation of our cluster is the optimally assimilated field of values that has already combined
the original background with all data except those belonging to our cluster. The effective back-
ground error is therefore not the original background error but rather the error of this partial
assimilation. However, we shall idealize the covariance statistics of this partially assimilated
field by assuming that, at the location of our cluster at least, the error covariance of what
has become the effective background is spatially homogeneous and smooth so that it might
be expanded in a power series in spatial coordinates. The values attributed to the composite
(multi-component) super-ob that stands in for the chosen cluster are also assumed to be linear
in the values of the contributing raw observations.

The criteria we shall examine to guide our construction of the super-obs will be based
upon such measures of quality as are exemplified by Shannon’s information entropy (Shannon
1948, Shannon and Weaver 1949, Cover and Thomas 1991) and by the ‘degrees of freedom for
signal’, (DFS). Entropy has been used as a criterion for quantifying the information content of
observing systems, e.g., Peckham (1974), Eyre (1990), Rodgers (1998). Criteria of these kinds
have more generally served to focus studies in the field of statistical ‘optimal design’, where
they are referred to as ‘trace criteria’ (Kiefer 1974, Pázman 1986, Purser and Huang 1993).
There exists a whole spectrum of such trace criteria, information entropy and DFS being just
two special cases. Conveniently, the same choice of super-obbing definition and composition
weights is obtained for any particular choice from this selection of trace criteria. The reason
for this will be made clear below.

Let the m individual data belonging to the compact cluster be denoted by the vector, y, the
field of partially assimilated data (not accounting for this cluster), by the ‘effective background’
vector in state space, xb, and the corresponding state space field of fully assimilated data by
xa. Denote the covariance operator for the errors of y by R, covariances for the errors of xb

by B and the linearized measurement operator, H. As is well known, the optimal analysis can
be written:

xa = xb + (B−1 + HTR−1H)−1HTR−1(y − Hxb). (2.1)

Unfortunately, since B−1, even when it is the inverse of a homogeneous background covariance,
is not practically expressible in explicit terms. It’s therefore customary to express the analysis

2



increment, xa − xb, in terms of a new control variable, v, and a (generally rectangular) matrix,
C:

xa − xb = Cv, (2.2)

where,
CCT = B. (2.3)

We can also conveniently write W to denote the symmetric operator of ‘precision weights’ for
the cluster of measurements,

W = R−1, (2.4)

and
d = y − Hxb, (2.5)

to denote the vector of data ‘innovations’. Then the assimilation formula becomes:

v = (I + CTHTWHC)−1CTHTWd. (2.6)

The covariance, A, of error of the assimilated field, xa, is given by,

A = (B−1 + HTWH)−1, (2.7)

so that the matrix operator,
A−1B = I + HTWHB, (2.8)

describes quantitatively how the information of the background is augmented via the assimi-
lation. For example, the trace of the logarithm of this quantity is directly proportional to the
Shannon entropy:

S0 = trace log(I + HTWHCCT)

= trace log(I + MMT)

= trace log(I + Q) (2.9)

where, again for algebraic convenience,

M = DHC, (2.10)

and
Q = MMT, (2.11)

with
DTD = W . (2.12)

A detailed derivation of (2.9) is provided in Appendix A.
The meaning of entropy in this context is the logarithm of the ratio of the squares of the

effective state-space volumes of the background probability relative to the analysis probability;
by choosing the logarithm here to have a base of four, the measure S0 is therefore exactly
in the conventional communication-theory units of ‘bits’. But in terms of natural logarithms
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(more convenient for our purposes) the formula might be equivalently written, using one of the
definitions of the natural logarithm function:

S0 = lim
p→0

Sp, (2.13)

where

Sp = trace
I − (I + Q)−p

p
. (2.14)

In this case, entropy is revealed to be just one of a continuum of the so called ‘trace-class’ of
optimality criteria, as discussed by Kiefer (1974), Pázman (1986) and by Purser and Huang
(1993). Other choices of p > 0 saturate at a finite measure of the information contributed by
each ‘degree of freedom’, or eigen-component, of Q. The special choice, p = 1, in this formula
leads to a well-used formula for the ‘degrees of freedom for signal’ (Wahba, 1985, Purser and
Huang 1993), because for this choice only, the saturation limit per degree of freedom is exactly
one.

The trace-class of optimality criteria we have just described can be used to guide the con-
struction of super-obs. The cluster of raw data will yield a value of Sp that is a measure of
the full amount of information available (relative to what we have called the background). Any
simplified summary of these data into some form of super-ob, being suboptimal, must gener-
ally yield a smaller Sp since some information is clearly being discarded. But we can use our
freedom to choose the manner in which this super-ob is constructed to maximize the associated
Sp within the limitations imposed by the constraints (such as the number, m, of independent
components possessed by this super-ob) under which this construction takes place.

We restrict ourselves to forms of super-obs whose component values are linear in the original
data. We use an over-bar to denote the generally vector-valued super-ob and its associated
operators. Thus, the values of the composite super-ob are components of vector, y, defined by:

y = LTy, (2.15)

for some rectangular matrix, L, whose m ≤ m columns are the vectors of ‘combination weights’
defining each component of the super-ob. The corresponding measurement operator, H, is
therefore:

H = LTH. (2.16)

The effective weight for this super-ob is:

W = (LTRL)−1, (2.17)

and the new information measure is therefore:

Sp = trace
I − (I + Q)−p

p
, (2.18)

or its limiting value in the case of Shannon information, where,

Q = MM
T
, (2.19)
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with,
M = DHC, (2.20)

and with
D

T
D = W . (2.21)

Now Sp can also be written:

Sp =
m

∑

a=1

1 − (1 + µ2
a)

−p

p
, (2.22)

where µ2
a are the eigenvalues of Q or, equivalently, of what we can call the ‘matrix Rayleigh

quotient’,
Q = LTHBHTL(LTRL)−1. (2.23)

[We can also think of the µa as being the positive singular values in the singular value decompo-
sition of any factor, M , that satisfies (2.19).] By replacing the columns of L by any invertible
linear combination of them, say L′ = LG, for a square matrix G for which |G| 6= 0, we find
that Q is unchanged; the Rayleigh quotient (as in the classical scalar version of it) depends
only upon the subspace spanned by the columns of L and not at all upon the particular values
of these vectors themselves. By writing,

L = DTV , (2.24)

the matrix Rayleigh quotient becomes:

Q = V TQV (V TV )−1. (2.25)

Geometrically, the operator, Q, is a ‘section’ through the operator Q, confining it to a
subspace (defined by the span of L) of dimension m. The eigenvalues of this Q are therefore
subject to certain minimum-maximum properties of eigenvalues, which are described in Chapter
1, §4, of Courant and Hilbert (1989). Of these properties, the one of importance here is that
the h-th eigenvalue (ordered from largest to smallest) of Q cannot exceed the h-th eigenvalue
of Q. (This result is often referred to as “Courant’s mini-max principle” although it has been
argued that the same result was known earlier independently by Rayleigh and Ritz.) Equality
of the respective h-th eigenvalues is attained when the subspace spanned by the first h columns
of L (and V ) is exactly that spanned by the first h eigenvectors of Q. For example, this result
is obtained when the successive columns of V are just the eigenvectors of Q ordered according
to eigenvalue dominance. Therefore, since the family of trace-class criteria (including DFS and
Shannon entropy) are monotonic additive functions of these eigenvalues, we have shown:

Theorem 1

The ‘best’ choices of m super-ob combination weights, L, by the criteria either of maximizing
the Shannon entropy or of maximizing the DFS, are those L whose columns span the subspace
formed by the m most dominant eigenvectors of Q. 2.

Remarks

When the columns of V are chosen to be the dominant eigenvectors of Q, each normalized
to unit length, then the effective weight matrix, W , of the resulting composite super-ob is
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simply the identity operator. But if, alternatively, we choose to normalize these eigenvectors
such that,

V TV = µ−2, (2.26)

then the magnitudes of the components of the corresponding diagonal weight matrix, obtained
using (2.24) and (2.17):

W = µ2 (2.27)

gives us an immediate quantitative assessment of the impact of these super-ob components
on the assimilation system and, as we show in the next section, allows us to modify their
weights (without changing the composition weights defined by L) in a way that improves the
condition number of the assimilation system as a whole without seriously risking the quality of
the assimilation attained in the (presumably) more rapidly converging minimization of the cost
function.

3. Structural preconditioning by super-ob weight adjustment

We now introduce a useful theorem on the eigenvalues of positive-definite or positive-semi-
definite matrices:

Theorem 2

If A and B are two positive-definite square matrices of the same order then the ranked
eigenvalues of their sum, A + B, are each greater than the corresponding ranked eigenvalues of
A; if B is merely positive semi-definite, then the ranked eigenvalues of the sum are not smaller
than those of A. 2.

Proof

Let V be a normalized eigenvector with a the corresponding eigenvalue of a positive-definite
matrix, A, such that,

V TAV = a. (3.1)

Let dA denote a positive-definite or semi-definite infinitesimal increment to A, and consider
the corresponding increments to the eigenvector and eigenvalue:

dV TAV + V TdAV + V TAdV = da. (3.2)

But differentiating the normalization condition for the eigenvector we find that:

dV TV = 0 (3.3)

which, combined with the substitution of the eigenvector identity,

AV = V a (3.4)

implies that
V TdAV = da. (3.5)

If the increment, dA, is positive definite, then the evaluation of the term on the left of (3.5) is
positive (though infinitesimal) and therefore, so is da. If dA is positive semi-definite, then the
term on the left is non-negative, and therefore so is da. If we now integrate the infinitesimal
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increments, dA, to get a finite symmetric positive-definite, or positive-semi-definite, matrix, B,
the corresponding integrated, da, retains the same properties of positivity, and non-negativity,
respectively. 2

One consequence of this theorem is that the largest m ranked eigenvalues of the assimilation
matrix, I + Q, corresponding to the inclusion of all data, are at least as great as the correspond-
ing m eigenvalues of any single multi-component optimal super-ob whose data contribute to
this assimilation. In particular, under the almost universally true assumption that the smallest

eigenvalue of the assimilation is essentially unity (Courtier 1997), the largest eigenvalue of any
super-ob’s Q sets a practical lower bound to the condition number of the assimilation. If we
find such eigenvalues that are very large, we have effectively identified a set of data which, while
possibly innocuous individually, are collectively responsible for a severe conditioning difficulty.

The smallest m − m eigenvalues, µ2
a, of Q, which are not represented amongst the eigenval-

ues of Q, contribute to the Shannon entropy deficit, S0 − S0, and to the DFS deficit, S1 − S1,
representing information lost through this procedure. While there can be no hard rule, it is fair
to say that:

(i) should the largest of these neglected µ2
a be comparable to or greater than unity, the

adoption of super-obbing risks the loss of significant information potentially available in the
raw data;

(ii) should an eigenvalue be significantly less than unity, then this degree of freedom of the
measurement set can be neglected without detriment to the assimilation;

(iii) if an eigenvalue is much larger than unity (as can happen with dense clusters of very pre-
cise data), then by theorem 2, we can take this as a reliable diagnosis of severe ill-conditioning.
The super-ob’s contribution to this ill-conditioning can be mitigated, without serious damage
to the assimilation, by artificially intervening to reduce this eigenvalue to a more reasonable
‘capping value’, without changing the associated eigenvector. Also by theorem 2, we can then
infer that, by such an intervention, any change in the spectrum of the eigenvalues of the full
assimilation and in the condition number itself (if it changes at all) must also be in the negative
direction.

Taking the typical value of the capping limit – perhaps around µ2
max

= 10, and recomputing
the ‘capped’ effective eigenvalues, we can put them into a diagonal matrix, µ̂2, of order m. Let
the leading m normalized eigenvectors of Q = MMT be the columns of V so that

V TQV = V TDHBHTDTV = µ2, (3.6)

Then, we might choose to make
L = DTV µ−1. (3.7)

With this choice the projection of the background covariance into the space of the super-ob
vector becomes the identity operator and the effective precision weight, without the ‘capping’
intervention, W defined in (2.17), becomes

W = µ2. (3.8)

Purser (1998) described algorithms for speeding up iterative approximations to the assim-
ilation’s descent problem that involved artificial manipulations of the spectrum of eigenvalues
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similar to what is accomplished by these eigenvalue manipulations, and referred to such pro-
cedures as ‘structural preconditioning’. There it was shown how, in principle, the algorithms
could be reformulated to ensure that the final convergent solution was still the exact minimum
of the original (ill-conditioned) problem, although the eventual asymptotic rate of convergence
could then never compete with that of the pure conjugate-gradient algorithm. Here we use
‘structural preconditioning’ to refer to just the simpler intervention that changes the descent
algorithm’s eigenvalue spectrum without paying heed to the fact that, by intervening, we are
also changing the convergent limit slightly (i.e., not strictly converging to the correct solution
anymore). In the present context, then, ‘structural preconditioning’ of the super-ob involves
simply replacing the precision matrix, W , of the super-ob by the capped version of it:

Ŵ = µ̂2, (3.9)

where components of the diagonal matrix, µ̂2, of eigenvalues µ̂a are now each defined:

µ̂a =

{

µa : µa < µ
max

µ
max

: µa ≥ µ
max

. (3.10)

By doing so, not only do we guarantee that the computed solution to the optimal analysis
with this substitution is typically indistinguishable from the true optimal solution, but we also
guarantee that the conditioning of the assimilation as a whole has been improved. Since, in
operational practice, the optimization involves a Krylov procedure (such as conjugate-gradients
minimization) that is necessarily terminated after a finite number of iterations, the advantage of
a sometimes dramatic reduction of the condition number of the problem effected by this eigen-
value capping intervention greatly outweighs the minor disadvantage of the (unattained) limit
of the convergent iterations being very slightly sub-optimal. Noting first that the intervention
in no way alters the definition of the super-ob combination weights, L, we now turn to an
examination of the form of these combination weights in the important asymptotic limit of a
compact cluster of similar measurements and a smooth background error of much larger spatial
characteristic scale.

4. Asymptotic characterization of compact optimal multi-component super-obs

The problem we examine in this section concerns the shape of the composition weights
of an optimal composite super-ob formed from a compact cluster of similar measurements
in the limit as the scale of the smooth covariance of background error goes to infinity. For
simplicity, we assume that, through appropriate scaling, this scalar covariance is isotropic in
spatial coordinates, X, and can be expanded at locations Xi and Xj as a series in even degrees
of separation: between two data indexed i and j where the scalar covariance is directly sampled:

(HBHT)ij = b0 + ǫb2|Xi − Xj |
2 + ǫ2b4|Xi − Xj |

4 + . . . , (4.1)

the asymptotic parameter ǫ allows the other expansion coefficients to be kept order-unity (as-
suming that the coordinate origin is located close to the center of the cluster) while examining
the asymptotic behavior as the covariance scale goes to infinity; ǫ is then essentially inversely
proportional to the square of the covariance scale.
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For each even p and q ≤ p, and in any number of spatial dimensions, there exist coefficient
matrices aq,p−q that enable us to express each term of the expansion of (HBHT)ij in terms
of the row-vectors of the kind, (vq)i, whose components consist of all products of degree q of
the components of the position vector Xi. For example, dropping the measurement index, i,
we can consider the case of two spatial dimensions, XT = [X, Y ], whereupon:

v0 = [1], (4.2a)

v1 = [X, Y ], (4.2b)

v2 = [X2, XY, Y 2], (4.2c)

and so on, with the vector vq in d dimensions having
(d+q−1

q

)

components in the general case.
Then for each even-valued p:

|Xi − Xj |
p =

p
∑

q=0

(vq)iaq,p−q(v
T

p−q)j , (4.3)

where the definitions of the matrices of coefficients a are given recursively in Appendix B.
While we have defined (vp)i to be a row-vector of powers of the coordinates of a position

vector, Xi, of data point i, we can generalize vp (without the second subscript) to denote a
matrix whose i-th row is that (vp)i. Now, if we also use the Taylor series coefficients, bp, of
(4.1) to define new coefficient matrices that pertain specifically to this covariance model:

bpq = bp+qapq, (4.4)

we can rewrite the expansion of the covariance B as it appears projected as HBHT in the
space of observations:

HBHT = v0b00v
T

0 + ǫ(v0b02v
T

2 + v1b11v
T

1 + v2b20v
T

0 )

+ǫ2(v0b04v
T

4 + v1b13v
T

3 + v2b22v
T

2 + v3b31v
T

1 + v4b40v
T

0 ) + . . . (4.5)

However, we shall require that the coefficients, bq, in the expansion of the covariance collectively
conform to additional requirements which are sufficient to guarantee that B has positive-definite
projection, HBHT, in any finite cluster of measurements. Introducing ‘even’ and ‘odd’ square
block matrices:

b[0:2s:2,0:2s:2] =











b0,0, b0,2, · · · b0,2s

b2,0, b2,2, · · · b2,2s

. . . . . . . . . . . . . . . . . . . . . . . .
b2s,0, b2s,2, · · · b2s,2s











, (4.6)

and

b[1:2s+1:2,1:2s+1:2] =











b1,1, b1,3, · · · b1,2s+1

b3,1, b3,3, · · · b3,2s+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b2s+1,1, b2s+1,3, · · · b2s+1,2s+1











, (4.7)

we require that the determinants of such matrices are positive for all s ≥ 0, i.e.,

|b[0:2s:2,0:2s:2]| > 0, s ≥ 0, (4.8)
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and
|b[1:2s+1:2,1:2s+1:2]| > 0, s ≥ 0. (4.9)

These imply that each matrix is positive-definite and therefore non-singular.
We proceed by assuming that successive right-eigenvectors of HBHTW , are also smooth

and each admit an asymptotic expansion in powers of the coordinates. It is convenient to
generalize the eigen-problem so that we can deal simultaneously with the set of eigenvectors
whose associated eigenvalues are of the same order of magnitude (as measured by the asymptotic
parameter, ǫ). In other words, we attempt to identity distinct ‘eigen-spaces’ of the problem
without necessarily striving to identify the spanning eigenvectors of each space individually.
This modified eigen-problem is expressed by equations of the more lenient form than the classical
eigenvector equation; we look for solutions to:

HBHTWUp = UpΛp, (4.10)

where Up is generally a matrix whose columns span an eigenspace, and where the quantity Λp

is generally a square matrix (an ‘eigenmatrix’) instead of a single eigenvalue. The identified
subspaces, indexed by p, will be segregated according to the asymptotic orders of magnitude
attained by the contents of Λ. The spanning array, Up, associated with each eigenspace is
assumed to have a convergent Taylor expansion in spatial coordinates at each degree of an
asymptotic covariance-scaling parameter, ǫ, but we do not require convergence of the asymptotic
series itself. Thus, we can write an asymptotic expression true for any finite degree, r̂, in the
limit as ǫ → 0:

Up =
∞
∑

q=0

r̂
∑

r=0

ǫrvqUp;qr + O(ǫr̂+1), (4.11)

and we shall assume that the corresponding recombination matrix, Λp, has an expansion:

Λp =
r̂

∑

r=p

ǫrΛp;r + O(ǫr̂+1). (4.12)

We define the generalized Gram matrices,

A[0:q,0:q] =







A00, · · · , A0q

. . . . . . . . . . . . . . . .
Aq0, · · · , Aqq






, (4.13)

where,
Apq = vT

p Wvq, (4.14)

and define,

P p;qr =
∞
∑

s=0

AqsUp;sr. (4.15)

Then we can examine the expansion of both sides of (4.10) to obtain, for each finite r̂ ≥ 0:

r̂
∑

r=0

ǫr





2r
∑

q=0

vq





[r−q/2]
∑

s=0

bq,2r−q−2sP p;2r−q−2s,s







 =
r̂

∑

r=p

ǫr





2r
∑

q=0

(

r
∑

s=p

Up;q,r−sΛp;s

)



 + O(ǫr̂+1),

(4.16)
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where the notation [t] for a fractional index, t is always taken to mean “integer part of t”.
First we note that no terms in ǫr for r < p exist on the right-hand side of (4.16) to balance

those we have put on the left-hand side. From this observation together with the asserted
non-singularity of the positive-definite matrices of (4.6) and (4.7) we infer that:

P p;qs = 0, 2s + q < p, (4.17)

which, for each r in (4.16), restricts the upper limit of the q summation on the left-hand side
of (4.16) to the finite maximum, q̂ = 2r − p. Now, since summed terms in q > 2r − p must
also vanish on right-hand side of (4.16) then, up to any p for which the leading eigen-matrix
contribution, Λp;p continues to remain non-singular, we further deduce that:

Up;qr = 0, for q − 2r > p. (4.18)

This confirms not only that each Taylor series converges; it also proves that the Taylor series
terminates at a finite q for each degree, r, of the asymptotic expansion. In each case where
r = p we find that the leading matrix term, Up;p0, in the expansion for Up has not more than
as many columns as the number of columns in vp itself. We shall assume for simplicity that
m is large enough, up to some terminating p

max
, to ensure that there are enough remaining

eigenvectors at each stage p to match the number of columns in the corresponding vp. The
normalization of the summed terms for Up at each r is arbitrary; consequently, without any
further loss of generality, we can conveniently choose these representative independent columns
of Up such that,

Up;pr =

{

I : r = 0,
0 : r > 0.

(4.19)

In the case where there are not enough remaining eigenvectors at the final stage p = p
max

, the
normalization convention must be modified. For example, by replacing the identity operator
on the right of (4.19) for Up;p0 by as many of the columns of I as are needed.

We can consolidate all these results in a family of equations “E(p; q, r)” relating the left-hand
side and right-hand side terms of each given q and r of (4.16):

E(p; q, r) :

[r−q/2]
∑

s=0

bq,2r−q−2sP p;2r−q−2s,s =
r

∑

s=p

Up;q,r−sΛp;s, q ≤ 2r − p, (4.20)

together with a rewriting of (4.15) as the appropriate finite summations in the equations that
we now name “P(p; q, r)”:

P(p; q, r) : P p;qr =

{

∑p−1
s=0 AqsUp;sr + Aqp : r = 0,

∑p−1
s=0 AqsUp;sr +

∑p+2r
s=p+1 AqsUp;sr : r > 0.

(4.21)

We are now set to prove:
Theorem 3

Provided the geometrical configuration of the contributing data cluster is such as to ensure
that the generalized Gram matrix A[0:p−1,0:p−1] remains positive-definite, the leading-order
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terms in the eigenvector expansion associated with eigenvalues that asymptotically scale as
ǫp are spatial polynomials of degree, p, that do not depend upon the form of the assumed
background covariance; the number of distinct eigenvectors at this order is then equal to the
number of columns in vp. 2

Proof of theorem 3

In the trivial case, p = 0, the single term, Up;p0 = 1, fully describes the leading, and in
this case, only eigenvector. For p > 0, then since P p;q0 = 0, q < p, and Up;q0 = 0, q > p, we
therefore have a system of equations of the generic structure:

A00Up;00 + A01Up;10 + · · · + A0,p−1Up;p−1,0 = −A0p,

A10Up;00 + A11Up;10 + · · · + A1,p−1Up;p−1,0 = −A1p,

· · ·

Ap−1,0Up;00 + Ap−1,1Up;10 + · · · + Ap−1,p−1Up;p−1,0 = −Ap−1,p,

Given that A[0:p−1,0:p−1] is positive-definite, we are able to invert this system to obtain all
the Up;q0, for q < p and, Up;p0 from (4.19), which collectively define the Up to the leading
degree, ǫp, in the asymptotic expansion without any dependency upon the coefficients br of the
particular covariance model assumed. 2

Having determined all the coefficients, Up;q0, for a given p, it follows that P p;q0 is also
known for any desired q by applying (4.21) with r = 0. The [p/2] sets of quantities, P p;p−2s,s

with 0 < s ≤ [p/2], are now found from the simultaneous solution of the equations obtained by
setting to zero the coefficients in the expansion on left-hand sides of (4.20) associated with
ǫp−svp−2s, s = 1, . . . , [p/2], and noting that the right-hand sides vanish for this range of
r = p − s. Again, it is the positive-definiteness of the matrices in (4.6) and (4.7) that ensures
that this is always possible. In order to evaluate the leading term in the eigen-matrix, Λp;p, we
then have:

Λp;p =

[p/2]
∑

s=0

bp,p−2sP p;p−2s,s. (4.22)

Higher order terms in the expansions for the segregated subspaces of eigenvectors spanned
by the Up, and of the corresponding eigen-matrices, Λp, follow by delving deeper into the
double sequence of terms in ǫrvq that are equated in each member, E(p; q, r), of (4.20) and each
member, P(p; q, r), of (4.21). An outline of the generic procedure is given in Appendix C.

For raw data errors that are uncorrelated, so that W is diagonal, then in the case of the
important single dominant eigenvalue, the leading asymptotic term gives us

Λ0;0 = b00A00

= b00v
T

0Wv0

= b0 trace(W ). (4.23)

Since b0 is just the background error variance, this result is giving us the intuitively reasonable
result that the super-ob’s dominant component has a weight which is, to leading approximation
in the asymptotic parameter, simply the sum of the weights of the contributing data. The
relationship connecting the dominant eigenvector, U0, to the composition weight vector in the
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first column of L is that each component of this leading column of L is proportional to the
corresponding diagonal component of W times the component of U0 and, since to leading order
in ǫ, we have

U0 = v0 + O(ǫ), (4.24)

the composition weights for these independent point data are, to leading approximation, pro-
portional to these data’s weights. This is again in accordance with the intuitive practice of
generating scalar super-obs as weighted averages of the contributing data.

When we look at the remaining less dominant components, Up, for p > 0, the leading terms
in the asymptotic expansions give us exactly the multipole ‘Type-2’ super-obs defined in Purser
et al. (2000). Thus, the efforts of this section have led us to an asymptotic justification of the
general multipole super-obs of Purser et al., described here as approximations to the optimal
super-obs obtained by asymptotic expansions in the spatial coordinates. While these leading-
order approximations to the composition weights of the multipole super-obs do not depend
upon the covariance model for the background (theorem 3), the eigenvalues which give the
effective precision weights of each component of the super-ob do depend upon the background
covariance model, even at leading order in the expansion.

This study also informs us that, since the eigenvalues at each spatial degree, p, scale as
ǫp, we can expect that the super-ob weights of any tight cluster [implying small ǫ, when the
components of the vq are maintained to have values collectively of O(1)] will be more strongly
dominated by µ2

0 ≡ Λ0 than is the case when the cluster is of a looser form, extending out to
distances more comparable with the scale set by the background error covariance. Thus, if
super-obs are used in a multi-grid context, in which the assimilation calculations are carried
out (at least partially) at a wide range of resolutions, it is at the coarsest resolutions that the
non-trivial multipole super-ob representations are expected to have the greatest value, being
less strongly dominated by the single largest eigenvalue of Q in these cases.

The asymptotic analysis presented in Appendix C has a potential vulnerability for any
p > 0 if we attempt to extend the expansion in cases where the leading contribution, Λp;p, to
the eigenmatrix is singular or ill-conditioned. This will occur if the geometrical configuration
of the cluster of point data are such that they do not form a stencil that allows all spatial
derivatives up to and including degree, p, to be expressed by these points alone, in a well-
conditioned way. Unfortunately, however, real-world data are often distributed in geometrically
regular ways that can certainly provoke troubles of this kind. For example, aircraft data lie
along a (roughly) one-dimensional track through space and an attempt to combine even a very
numerous (but spatially compact) set of such measurements into a two- or three-dimensional
‘dipole’ super-ob by the procedure we have described will fail; the stencil that raw data provide
only allow the expression of the first-derivative along the track, not across it. In this case, the
2 × 2 matrix, Λ1;1, has a rank of one and, being non-invertible, does not allow a continuation
of the asymptotic expansion of Appendix C to be carried out to a higher degree. It is therefore
necessary to examine the rank of the leading matrix term, Λp;p, at each p to decide whether the
super-ob, as formulated, is of this degenerate type. In the example of aircraft data, such data
must be super-obbed, if at all, recognizing that they are effectively confined to one dimension
(even when their track is a curved one).
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5. Discussion

To an increasing degree, the data going into a modern operational data assimilation system
are dominated by massive amounts of automatically gathered measurements, whether remotely
sensed from satellites or radar, or deriving from the more conventional platforms of radiosondes
and aircraft. The necessity of data reduction cannot be doubted, but the manner in which this
reduction is carried out can adversely affect the assimilation if the adopted procedure does not
intelligently take account of both the quality (precision) and the density of each type of data.

The first thing to note is that measurements that are essentially continuous in some index
parameter without their errors being strongly correlated, should have their quality expressed
quantitatively as a “precision density” in that index variable. The super-obbing theory validates
this results since, as we have found from its first-order asymtotics, the effective weight of an
aggregation of uncorrelated data bunched well within the characteristic scale of the background
covariance (assumed smooth) is essentially additive. To give some examples, the quality of
(Kelvin, K) temperature data measuring in a radiosonde profile where height is the index
variable should be given as the precision density, K−2 per unit height; aircraft temperature
data provided along a track with sufficient frequency to be essentially a continuous line as far
as they affect a horizontal analysis should be assessed a precision density in units of K−2km−1;
hyperspectral measurements of brightness temperatures, where the suitable index might be
wavenumber, cm−1, should be characterized by a precision per unit wavenumber, units: K−2cm,
and so on. Whether such data are super-obbed, or simply thinned, the proper specification of
their original precision densities, together with the index densities of the resulting super-obs or
thinned representatives, provide objective guidance for choosing the correct effective precisions
of these artificial representatives of the underlying data-continuum.

Given the nature of the Krylov-based solution algorithms almost universally employed to
solve variational assimilation problems, there is one surprising and paradoxically deleterious
impact that very good data can have. When their precisions are specified to be vastly greater
than the corresponding components of precision of the background field, and they are suffi-
ciently numerous, they can stall the convergence of these algorithms owing to the very large
condition numbers they engender. The method of super-obbing addresses both the problem of
overwhelming amounts of data, and, at least in part, the issue of adverse effects on the condition
number, provided the super-obs are constructed in a way that takes account of the information
that might be safely under-weighted, without adverse effect, from the original (i.e., pre-super-
obbed) data relative to the information already contained in the pre-existing background field.

This note is an attempt to formalize objective principles by which super-obs, from a range of
sources, might be constructed so that valuable information, in an objectively measured sense,
is retained to the greatest degree allowed by the inherent constraints imposed by projecting
the information from each cluster or region of data onto a small and discrete number of its
representative degrees of freedom. It is shown that, in a reasonably convincing asymptotic limit
of smooth fields, the multipole construction described in Purser et al. (2000) is actually optimal
in terms of minimizing information loss, and is not sensitive to the precise criterion amongst the
set of “trace” measures of information adopted. The suggested empirically-motivated capping of
eigenvalues associated with the relative precision of the super-obs is not so amenable to rigorous
justification, but makes sense in the light of the known behavior of conjugate gradients-type
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algorithms that struggle to converge when sufficiently many of their non-dimensionalized system
matrix’s largest eigenvalues greatly exceed unity.

An additional future advantage of intelligent super-obbing might be gained if observation-
space preconditioners are adopted (as in the Navy’s NAVDAS described by Daley and Barker,
2000), since in that case, the computational cost of accommodating the effects between distant
tight clusters of data, treated as super-obs with only few degress of freedom, will be considerably
less than the corresponding cost of treating all the combinations of interactions between the
very much more numerous pairs of the same data in their pre-super-obbed existence. This is a
topic worthy of future investigation.

Appendix A

Defining logarithms of matrices

With
M = DHC (A.1)

as in (2.10), we can perform a singular value decomposition:

M = V µZT (A.2)

where the columns of V and Z are orthogonal, and µ is a diagonal matrix of positive elements.
The logarithm of the symmetric and positive-definite combination, I + MTM , is always defined
and is:

log(I + MTM) = Z log(I + µ2)ZT (A.3)

and in the same way:
log(I + MMT) = V log(I + µ2)V T. (A.4)

It is straightforward to verify that,

HTWHB = B−1CZµ2ZTCT, (A.5)

and so we also consistently define,

log(I + HTWHB) = B−1CZ log(I + µ2)ZTCT. (A.6)

The trace of a product of matrices is unchanged by any cyclic permutation of its factors, and
hence:

trace log(I + MTM) = trace log(I + MMT) = trace log(I + HTWHB) = trace log(I + µ2),
(A.7)

that is, the sum of the logarithms of the diagonal elements, 1 + µ2, or the log-determinant of
any of the matrices of which these diagonal elements are the non-unit eigenvalues.

Appendix B

Polynomial coefficient matrices, a
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In any number of dimensions
a00 = [1], (B.1)

while, in two dimensions, second-degree terms are combined using the three coefficient matrices:

a02 =
[

1, 0, 1
]

, (B.2)

a11 =

[

−2, 0
0, −2

]

, (B.3)

a20 =







1
0
1






. (B.4)

The coefficient matrices of higher degrees can be obtained by the general recursion that uses
the notion of the convolution product of matrices:

amn =
∑

i,j,k,l

(aij ⋆ akl) δi+k,mδj+l,nδk+l,2, (B.5)

where δij denotes the Kronecker delta, and the convolution operator, ⋆, among the a matrices is
defined in the following way. First, for these matrices, we take the indices ı, , etc of their rows
and columns to be integer vectors having as their own component of the corresponding powers
of X, Y , and so on, referred to by these row and column indices. Let aı be the element of a

at such a vector-index row and column pair, ı and . Then the matrix convolution is defined,
again using the Kronecker delta (but now generalized to vector indices):

a′′

ı′′′′ =
∑

ı,,ı′,′

(

a′

ı′′aı

)

δı′+ı,ı′′δ′+,′′ . (B.6)

For example, applying (A.5) get the matrices a of fourth-degree,

a04 = a02 ⋆ a02, (B.7a)

a13 = a11 ⋆ a02 + a02 ⋆ a11, (B.7b)

a22 = a20 ⋆ a02 + a11 ⋆ a11 + a02 ⋆ a20, (B.7c)

a31 = a20 ⋆ a11 + a11 ⋆ a20, (B.7d)

a40 = a20 ⋆ a20, (B.7e)

and, in two dimensions, the definition of the matrix-convolution operator leads to the result:

a04 = aT

40 =
[

1, 0, 2, 0, 1
]

, (B.8)

a13 = aT

31 =

[

−4, 0, −4, 0
0, −4, 0, −4

]

, (B.9)

a22 =







6, 0, 2
0, 8, 0
2, 0, 6






. (B.10)
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Appendix C

Continuing the asymptotic expansions for the non-leading terms of Up and Λp

It is already determined that P p;qr = 0 for all q and r such that q + 2r < p. After estimating
the leading terms in Up and Λp the (possibly non-vanishing) values of Pp;qr for all q + 2r ≤ p
are known, as are those for any desired q for r = 0. The matrix quantities Up;q0 are also
known for all q. We shall proceed by iteratively repeating a cycle of steps, each cycle indexed
by t ≥ 1, refining the estimates of Up and Λ by adding the next-degree of approximation to
these quantities in the course of each cycle executed. We justify the progression of steps by an
inductive argument that assumes that, at the beginning of the cycle, t, we know P p;qr for any
q + 2r ≤ p + 2t − 2 and, for r < t for any q + 2r ≤ p + 2t. We also assume that all the Up;qr are
known for r < t. These facts are certainly true at the beginning of cycle, t = 1, so it is sufficient
to show that, if they are true at the start of an arbitrary cycle, t, they necessarily remain true
at the start of cycle, t + 1. However, before we extend the asymptotic expansion to higher
degrees in the implicit parameter ǫ we need to ascertain that the initial approximation, Λp;p,
to each eigenmatrix is nondegenerate. If it possesses a null space, or even if it is ill-conditioned
to inversion, we are forced to conclude that pth-degree super-ob components constructed from
this cluster of data are collectively degenerate and there is not a unique way to extend the
asymptotic series beyond the leading terms. In what follows, we therefore assume that the
geometrical configuration does not suffer this defect.

The steps of cycle, t, are as follows.
Step 1:

Use {E(p; p + 1 − 2s, p + t − s), 1 ≤ s ≤ [(p + 1)/2]}
to solve simultaneously for {P p;p+1−2s,t+s−1, 1 ≤ s ≤ [(p + 1)/2]}.
Step 2:

Use E(p; s, p + t) to solve for Up;s,t, for p + 1 ≤ s ≤ p + 2t.
Step 3:

Use {P(p; s, t), 0 ≤ s < p} to solve simultaneously for Up;s,t, for 0 ≤ s < p.
Step4:

Use P(p; p, t) to solve for P p;p,t, and use {P(p; p + 1 + s, t − [s/2]), 0 ≤ s ≤ 2t + 2}
to solve for P p;p+1+s,t−[s/2], 0 ≤ s ≤ 2t + 2.
Step 5:

Use {P(p; p − s − 1, p + t − s), 1 ≤ s ≤ [p/2]} to solve simultaneously for
{P p;p−s−1,t+s, 1 ≤ s ≤ [p/2]}.
Step 6:

Use E(p; p, p + t) to solve for Λp;p+t.
Increment t by 1, go back to Step 1 and repeat as necessary, or:
Step 7:

End. 2

Obviously, some of these iterative steps are not exercised when p = 0. An examination
of the simultaneous linear equations we need to solve at Step 1 and at Step 5 reveals that,
again, we are assuming the non-singularity of the block-matrices of (4.6) and (4.7), while an
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examination of the simultaneous linear equation we need to solve at Step 3 reveals that we are
assuming the same condition of invertibility of the generalized Gram matrix, A[0:p−1,0:p−1], as
was already assumed in the asymptotic derivation of the leading coefficients, Up;q0, q < p, in
section 4. It is at Step 2 that we require Λp;p to be invertible and well-conditioned. Given all
these conditions we find that our cycle of derivations justify the continuation of the inductive
process. Therefore, if the conditions are met that allow us to initially solve for the leading
asymptotic terms of Up and non-degenerate Λp, then we can certainly continue the cycle of
derivations for the asymptotic terms up to any higher degree we choose.
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